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mate. The individual phases can then be determined 
from the twofold estimated invariants, provided that 
there exists a redundant set of accurately estimated 
invariants. 

5. Concluding remarks 
The presently available theory for the estimation of 
the three-phase structure invariants, via combined 
direct methods - anomalous dispersion techniques, 
has been reexamined. The analysis shows that these 
techniques do not yield one or two but rather eight 
possible estimates of the invariants. This, naturally, 
appears at first to limit severely the applicability of 
these techniques. Preliminary test calculations indi- 
cate, however, that in many cases the eight possible 
estimates are clustered around one or two values. 
Distinguishing these cases from those in which the 
eight estimates are widely scattered results in a sig- 
nificant gain in accuracy. Extensive calculations, 
based on the strategy described in § 4, are now in 
progress. Their results will be presented in the near 
future. 

Details of the test calculations 
All of the calculations were done using calculated 
diffraction data for the PtC12- derivative of cyto- 
chrome C55o (Timkovich & Dickerson, 1973, 1976). 
The coordinates were obtained from the Protein Data 
Bank (Bernstein et al., 1977). The calculations were 
done on a 16-bit PDP11/23 computer. The programs 
used were written by S. A. Potter and C. M. Weeks 
of the Medical Foundation of Buffalo, Inc., and adap- 
ted by Nancy J. Moore. 

We thank S. A. Potter and C. M. Weeks for making 
their computer programs available to us, and R. H. 
Blessing for his critical reading of the manuscript. 
Financial assistance from the Natural Sciences and 
Engineering Research Council of Canada and from 
Queen's University is gratefully acknowledged. 
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Abstract 

Crystallographic analysis is applied to a set of elec- 
tron diffraction patterns taken from a rapidly cooled 
Al-Mn alloy to construct reciprocal-lattice patterns 
in agreement with the observed icosahedral results. 
The analysis leads to a proposed atomic scale model 

which is derived from two sets of experimental modu- 
lations, each of which has six independent modula- 
tion vectors. The underlying structure has a lattice, 
the unit cell of which involves 32 atomic sites with 
the required symmetry properties. The appearance of 
the experimental electron diffraction patterns is 
explained either by the coherent arrangement of this 



GABRIELLE G. LONG AND MASAO KURIYAMA 157 

lattice with an irrational sublattice or by an indepen- 
dent set of modulations. The relationship of this struc- 
ture to three-dimensional nonperiodic Penrose tilings 
is explored. 

1. Introduction 

Since the early part of this century, when Laue (1912) 
proposed that the observed diffraction pattern of X- 
rays by a crystal was due to the interaction between 
the wave nature of light and the periodicity of the 
arrangement of atoms in a crystal, it has been thought 
that long-range translational invariance (which 
defines a crystal) is required to produce sharp diffrac- 
tion peaks. The crystal lattice has historically been 
described in terms of its translation, reflection, rota- 
tion and inversion symmetries. While a molecule can 
have any symmetry, an infinite-periodic lattice cannot 
have, for example, 2w/5 or 2w/7 rotational symmetry 
(Kittel, 1976) because the five- or sevenfold axis can- 
not be used to fill all of space periodically. Recently, 
Mackay (1981, 1982) suggested a new crystallography 
in which fivefold patterns may be observed. The 
mechanism by which he creates the conditions for 
observing this previously disallowed symmetry is to 
fill space nonperiodically with more than one primi- 
tive cell. The simplest case involves two rhombohedra 
which are fitted together according to a nonperiodic 
three-dimensional Penrose (1974) tiling. The rules for 
filling space are based on the Fibonacci sequence 
(Hoggatt, 1969) involving the lengths one and ¢, 
where ¢ is equal to (1 +x/~)/2, and is known as the 
Golden Section. Kramer & Neri (1984) have demon- 
strated the association between the icosahedral group 
A(5) and the three-dimensional generalization of the 
Penrose tiling via the two rhombohedra. 

While it may not be surprising that three- 
dimensional space can be filled nonperiodically by 
two or more primitive cells, it is surprising at first to 
find that there can exist perfect long-range correla- 
tions in such a structure. The recent discovery of a 
metallic 'icosahedral phase' by Shechtman, Blech, 
Gratias & Cahn (1984) has added further impetus to 
this work. 

In that experiment on rapidly cooled Al-14 at. % 
Mn, a set of electron diffraction patterns were 
acquired which suggest orientational order and 
icosahedral point-group symmetry. Levine & 
Steinhardt (1984) then proposed a 'quasicrystal' 
model (which is nonperiodic as outlined above) to 
explain the three- and fivefold diffraction patterns. 

what  has not yet been demonstrated is how the 
nonperiodic structures relate to the underlying atomic 
order of the material, and what is the explicit connec- 
tion to the sharp delta-function-like diffraction pat- 
terns obtained. In particular, should the structure be 
described as nonperiodic but ordered or as an incom- 
mensurate modulated crystal that may require a gen- 

eralization of our current understanding of modula- 
tions? 

The new phase is fabricated by rapid cooling of 
molten aluminium-14-20at .% manganese using 
melt spinning. The result is a rather brittle ribbon 
- 2  mm wide and ---40 }xm thick. The object of interest 
is a flower-shaped crystal approximately 2 p~m in 
diameter. In so far as we know, single-phase binary 
alloy ribbons have not ~¢et been created. The flower- 
shaped objects (not five-petalled!) are usually seen 
embedded in f.c.c, aiuminium (Boettinger, 1984) and 
are sometimes accompanied (Boettinger, 1984) by 
other A1-Mn phases. Each of the latter phases has 
well-defined physical boundaries. Since the flower- 
shaped specimens which exhibit icosahedral point- 
group symmetry are accompanied by other phases, it 
is difficult to isolate the object of interest. Electron 
diffraction is, among the possible diffraction tech- 
niques, a very useful probe because the size of the 
beam is comparable to the size of the crystal, and the 
stray f.c.c, aluminium spots can easily be isolated. 

In the analysis of the electron diffraction patterns 
(Kuriyama, Long & Bendersky, 1985), the view that 
we adopted was that the specimen can be described 
as an imperfect real crystal in which lattice transla- 
tions do not necessarily hold (Kuriyama & Miyakawa, 
1969; Kuriyama, 1970, 1975). This starting point 
should not bias the analysis since no particular sym- 
metry or lattice is assumed. It will be demonstrated 
below that the atomic positions for the icosahedral 
structure can be given based on a reference crystal 
lattice. In this model, three-dimensional modulations 
may appear as atomic correlations, rather than as 
weaker modulations in one or two dimensions 
(Dehlinger, 1928; Fujiwara, 1957; de Fontaine, 1966), 
as have beeen extensively studied in the past. While 
this work was under way, we learned of two papers 
(Bak, 1985; Nelson & Sachdev, 1985) that suggest 
that the icosahedral structures belong to the larger 
class of incommensurate modulated structures, where 
the focus of those works was Landau-Ginsberg 
theory. 

2. Analysis in momentum space 

With the Born (kinematical scattering) approxima- 
tion, the scattering amplitude for a system lacking 
lattice translational invariance is given by 

V is the volume of the sample that is exposed to the 
incident beam; ~o(r) is either the electron charge 
density for X-rays, the Coulomb potential for elec- 
trons, or the nucleon potential in the case of neutrons. 
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H is the reciprocal-lattice vector for an arbitrary refer- 
ence crystal lattice, and the qi's describe the devi- 
ations from the reference reciprocal lattice (or the 
modulations), ni takes the value of zero or positive 
or negative integers. 

The scattering amplitude is the product of two 
factors: one is the scattering factor which includes 
electrons in the material, and the other is the 
geometrical structure factor which represents the 
three-dimensional construction of diffraction spots in 
reciprocal (momentum) space. The intersection of 
this construction with the Ewald sphere (a plane in 
the case of electron diffraction) gives the patterns of 
electron diffraction, or the X-ray patterns that would 
be obtained with a precession camera. The observed 
diffraction spots (k's) can be sorted using the rule for 
momentum transfer: k = H + ~  n~qi. These sets of k's 
will be called 'reciprocal-lattice points'. The objective 
is to find the independent sets of q~'s and H, in other 
words, to find the nature of the incommensurate 
structure that leads to the observation of the special 
icosahedral symmetry. 

Electron diffraction patterns were taken in five 
orientations as shown in Fig. 1. For convenience, 
three orthogonal axes are introduced, one of which 
is [001], perpendicular to the twofold pattern, and 
the other two ([100] and [010]) are parallel to the x 
axis and the y axis in Fig. 1. The twofold pattern was 
used to identify a reference reciprocal lattice in the 
(001) plane. Since lattice translational invariance does 
not necessarily hold, the choice of H is arbitrary. It 
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Fig. 1. A set of  five electron diffraction pauerns taken from rapidly 

cooled AI-14 at. % Mn. The inset shows the stereographic pro- 
jeetion of  axes in the icosahedral symmetry. A twofold pattern 
is at the origin of  the x and y axes; angles indicate rotations 
about the respective axes. 

has proven useful to select reasonably spaced spots 
within a limited area (Fig. 2). Since there is a periodic 
repetition of the positions of the diffraction spots, the 
measured modulations form a finite set. One may 
start with redundant sets since these c~in be reduced 
at the end to the smallest number of independent sets. 
An early check of the accuracy of the measured modu- 
lations and the assumed reference lattice is a com- 
parison of the experimental pattern and a calculation 
of the reciprocal-lattice points in the (001) plane. 

Next, the Ewald sphere (plane) is rotated about 
either [100] or [010] by the amount indicated in Fig. 
1. The reciprocal-lattice points in the direction per- 
pendicular to the rotation axis add partial information 
on the arrangements of the reciprocal-lattice points 
in the (100) and the (010) planes. In this manner, a 
three-dimensional reconstruction of the reciprocal- 
lattice points is complete. The calculated intersections 
of these reciprocal-lattice points with the Ewald 
sphere (plane) are shown in Fig. 3 next to the 
measured patterns for comparison. The agreement 
between the positions of observed diffraction spots 
and those in the calculated patterns is very good. This 
demonstrates that the modulations measured in the 
twofold pattern form a complete set in that the three- 
fold, the fivefold and the apparent mirror patterns 
are completely indexed. 

The next stage is to reduce the exhaustive sets of 
qi's (we used 42) to the independent sets of qi's, and 
also to determine whether the reference reciprocal 
lattice, H = hb~ + kb2+/b3, exists as an unmodulated 
structure. The results are: 

1. there are two sets of six independent modula- 
tions {qi (~)} and {q ~2)} (i = 1 , . . . ,  6), as listed in Table 
1, instead of the three independent vectors normally 
required to identify diffraction spots; 

2. all six modulations in each set have the same 
magnitude [Iq,(') I = I q / ' l  and Iq,~2)l = Iq/2)l], where the 
ratio of the magnitude in set (1) to that in set (2) is 
approximately four; 

| ~  6 1  

1- 1 -I 

Fig. 2. A reference frame shown to a twofold pattern. 
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Fig. 3. Comparison of  the observed patterns (fight) and the calcu- 
lated patterns (left). The reciprocal-lattice points are constructed 
from the oberved patterns using an arbitrary reference reciprocal 
lattice and the accompanying modulations. (a)  Twofold pattern; 
( b )  threefold pattern; (c) fivefold pattern; and (d)  apparent 
mirror pattern. (The sizes of  spots were selected for convenience, 
since it is premature to  attempt an intensity calculation.) 

Table 1. Measured modulations 

These quantities were measured in cm; the value of  AL (the electron 
diffraction camera constant) was 6-77  x 10 - t 2  m 2. 

ql (t) - (0.64, 0.40, 0.00) ql (2) = (2.65, 1~65, 0.00) 
q2 ¢1) = (0.40, 0.00, 0.64) q2 (2) -- (1.65, 0.00, 2.65) 
~(~)  = (0.00, 0.64, 0-40) q3 f2) = (0.00, 2.65, 1-65) 
q4 f~) = ( - 0 . 4 0 ,  0.00, 0.64) q4 f2) = ( -1 .65 ,  0.00, 2.65) 
q5 (1) -- (0.00, 0.64, - 0 - 4 0 )  q5 (2) = (0.00, 2.65, - 1 . 6 5 )  
q6 (1) -- (0.64, - 0 . 4 0 ,  0.00) q6 (2) = (2-65, - 1 . 6 5 ,  0.00) 

3. the modulation directions of the two sets are 
identical, within experimental error, and each set has 
the two angles (63.4 and 116.6 °) related to icosahedral 
symmetry; and 

4. the reference reciprocal-lattice vectors are 
created by the sums of two q+(l) vectors. Another 
possible reference lattice is given by the differences 
of the same vector pairs. Thus, the original unmodu- 
lated structure (the underlying reference lattice) can- 
not be uniquely identified. In other words, the posi- 
tions of the reference lattice points can be found in 
terms of the 'modulation vectors'. This result is 
astonishing within the framework of the normal con- 
cept of incommensurate crystals. 

Using only the two sets of modulations derived 
above, the properties of the diffracted intensity can 
be explained phenomenologically using the scattering 
amplitude [in particular, the first factor in (1)], even 
before having information on the exact A1 and Mn 
sites in the structure. If the electron charge density 
around the atoms is assumed to be spherically sym- 
metric, the scattering factor yields the intensities 
obeying the icosahedral symmetry about the incident 
beam• Further, if the electron charge distribution is 
assumed to be slowly varying, the intensities for 
different orders ni are given by the modulus square 
of the amplitude in the form 

where Mj is an appropriate length scale along the 
direction e. This behavior was shown by Levine & 
Steinhardt (1984) as derived from the one- 
dimensional case. 

In electron diffraction, the Ewald sphere (plane) 
intersects many reciprocal-lattice points for a given 
beam geometry, and this results in the simultaneous 
excitation of  Bragg conditions. The kinematical scat- 
tering approximation is then inadequate to explain 
properly the intensities in electron diffraction pat- 
terns. What would be required is the phase object 
approximation (Cowley, 1981), or the dynamical 
theory for many beams (Sturkey, 1957; Fujimoto, 
1959; Niehrs, 1959; Kuriyama, 1970, 1975). 
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3. Structure in real space 

3.1. Atomic arrangement 

In the previous section, the momentum space data 
in the twofold electron diffraction pattern were 
analyzed to determine the two sets of six modulation 
vectors required for indexing the two-, three- and 
fivefold icosahedral patterns. It was shown that these 
modulations yield the angles and distance scale 
relevant to the icosahedral point group. They can also 
be used to gain insight into the three-dimensional 
arrangement of atoms for this special symmetry, as 
we will show in this section. For this purpose it will 
be useful to retain a cubic coordinate system, even 
though the original cubic reference lattice is no longer 
uniquely defined. 

When the two sets of modulations, qi {j), are con- 
verted into modulation distances in real space, the 
magnitudes of ri  ° )  and ri  (E) a r e  found to be approxi- 
mately* 4.34 and 1.05 A respectively, where r~ (j) is 
parallel to q~(~). Therefore, r~(° is also parallel to ri (2). 
The direction cosines of the r~ are given in Table 2. 
It is noteworthy that, within experimental error, 
the following relation holds for the angle 0 given in 
Table 2: 

sin 0 cos 0 = cos E 0 -  sin E 0. (2) 

The modulation distances r~ (~) are assumed to corre- 
spond to the correlation distances between atomic 
scatterers. That is, the ri (1) set will be considered to 
represent some of the interatomic distances in the 
structure. It is not necessary that the nearest-neighbor 
distances are among the assumed correlations. 

Since the vector sets are identical in direction, 
differing only in their magnitudes, only one set, the 
ri (1) set, will be considered here. The six vectors sepa- 
rate naturally into two sets of three where three have 
an included angle of 63.4 ° , and the other three have 
an included angle of 116.6 °. To gain insight into the 
packing of atoms, one can use Friedel's law. This 
means that one cannot a priori determine whether the 
two sets of three vectors all points 'upwards'  or if 
some of them point upwards and others downwards 
(Fig. 4a). Since these vectors are taken to represent 
some of the atomic correlations, some possible posi- 
tions of the atoms within two rhombohedra are iden- 
tified in relation to atom 0 as shown in Figs. 4(b) and 
(c). One of these rhombohedra has a pointed shape 
(a  = 63.4 °) and the other has a flat shape (c~ = 116.6°). 
These positions of atoms on the six rhombohedral 
faces provide a guide for maintaining fivefold sym- 
metry when the two rhombohedra are used to fill 

* All lattice parameters  and interatomic distances depend  on the 
size of  the vectors q. Since the experimental  error is quite large 
( ~  10% ), the distances quoted  are to be  unders tood as relative and 
an adjus tment  o f  one distance (due to future more accurate experi- 
ments) will require the concurrent  adjustment  of  all the distances. 

Table 2. Direction cosines for the interatomic distances 

Ir~(l)l = 4.34/~,; [ri(2) I = 1.05 A and 0 = 31.717 °. See footnote  to §3.1. 

rl (cos 0, sin 0, 0) 
r2 (sin 8, 0, cos 0) 
r3 (0, cos 0, sin e) 
r4 (-sin O, O, cos O) 
r5 (0, cos O, -sin O) 
r 6 (COS 0, --sin 0, 0) 

three-dimensional space. For example, the distances 
between atom 1 and atom 52 and between atom 3 and 
atom 5E are given by ]rl - (rE + rs)] and Ir3 - (rE + rs)], 
respectively, and are found to be equal because of 
(2). These distances are also equal to Ira+rn+rsI, 
which is the distance between atom 1 and atom 3 + 4. 
Thus, one atomic site, say 5E in Fig. 4(b), on the face 
of a pointed rhombohedron becomes equivalent to a 
site on the tip (3 +4)  of the shortest body diagonal 
of a fiat rhombohedron sharing atom 0. 

3.2. Model I: number density 1-to-1 

The atomic arrangement derived above guarantees 
icosahedral point-group symmetry within the volume 
of three-dimensional space when the two decorated 
rhombohedra are used to fill space with number 
density of one pointed to one fiat rhombohedron. 

2 2 

r;7"~i"I~ 3 

- . ~ .  _ r4 0 ~ , N  \ \ 4 

(a) 

I / I ii 

A ."I / I / I  
/11", I 

/I " I~I 

| 31/'.~-" 

o 

1 ~ / / /  '.,IC,~ 3 / . . . / i / /  

u c,,,,, / , , , ,  
r4",,,~d',, 

(b) (c) 

Fig. 4. (a)  Atomic correlations. 0 is an atom at the origin. 1, 2 and 
3 are atoms located distances rl, r 2 and r 3 from 0. 4, 5 and 6 are 
atoms located distances ra, r5 and r6 from 0. 4, 5 and 6 are atoms 
located distances - r4 ,  - r5  and - r  6 from 0. (b) Possible atomic 
posit ions in the pointed rhombohedron .  41 is located a distance 
r4 from atom 1. 52 is located a distance r 5 from atom 2. 63 is 
located a distance r6 from atom 3. (c) Possible atomic posit ions 
in the fiat rhombohedron .  3 + 4  is a possible atomic site. All 
other comers  are shared. 
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Using the angles between the rhombohedra given 
by the data, the filing ('tiling') of  real space is accom- 
plished when the faces of the pointed (63•4 °) rhom- 
bohedra touch only the faces of the flat (116.6 °) ones 
and vice versa. With this tiling, there is no ambiguity 
concerning the positions of the atomic sites on rhom- 
bohedral faces. The resulting structure has four true 
threefold axes 70.53 ° apart, along which the longest 
and shortest body diagonals of the pointed and the 
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Fig. 5. Patterns of  atomic sites in space for cuts perpendicular to: 

(a) and (b) a fivefold axis; (c) and (d) a threefold axis; (e) and 
( f )  a twofold axis; (g) and (h) a local threefold axis. 

flat rhombohedra respectively are aligned• These 
directions are (111) axes, or a (111) axis and three of 
the other threefold axes in the icosahedral symmetry. 

All of  the properties of the icosahedral point group 
are accommodated in this structure. The fivefold, the 
threefold and the twofold axes are continuous 
through space, although the fivefold (and some of 
the threefold) axes are 'local'. An illustration of this 
is given in Fig. 5. For this figure, 32 fiat and 32 pointed 
(decorated) rhombohedra were used. A cut perpen- 
dicular to a fivefold face is shown in Figs. 5(a) and 
(b), with the rhombohedral edges shown in Fig. 5(a) 
for reference• Cuts perpendicular to a true threefold 
(Figs• 5c and d), twofold (e and f ) ,  and a local 
threefold (g and h) axis are also given• The atomic 
motif created using decorated rhombohedra con- 
forms to icosahedral symmetry, but we note that the 
simple geometrical three-dimensional packing of 
undecorated rhombohedra does not conform to 
icosahedral symmetry within the volume• This is 
similarly true for the rhombic triacontahedron, de- 
spite superficial appearances to the contrary. 

The pattern of atomic sites shown in Fig. 5 was 
derived from a set of displaced rotations about four 
axes 70•53 ° apart. Another way of looking at this 
construction is to consider a group of four fiat and 
four pointed (decorated) rhombohedra appropriately 
aligned (Fig. 6). These can be spatially translated 
along three basis vectors: al = rl+rs, a2--r2+r6 and 
a3=r3+r4. Such translations restore the original 
arrangement of rhombohedra and continue the pat- 
tern of atomic sites. Using (2), the ai's are shown to 
be mutually orthogonal and equal in magnitude to 
2r cos 0. From this point of view, the six ri{1}'s rep- 
resent a new crystal lattice with three independent 
basis vectors ai given above• 

The unit cell for this lattice is constructed of four 
flat and four pointed rhombohedra as mentioned 
above• It is a cubic-like structure that could be called 
'icosahedral cubic' because the properties of the 
icosahedral point group are accommodated as shown 
in Fig. 5. Therefore, the same construction of Fig. 5 

Fig. 6. Unit cell for model I. The cell is shown aligned perpen- 
dicular to a fivefold axis. 
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is realized using eight unit cells of Fig. 6 stacked 
2 x 2 x 2. The lattice parameter of the icosahedral 
cubic cell is a = 7.38 A* and it contains sites for 32 
atoms. Eight atomic sites are on the vertices and 24 
sites are on the faces of the rhombohedra. The posi- 
tion of an atom is given by 

R(n) = ~ n,r,, (3) 

where n indicates a set of integers {n~}. (This 
expression is valid throughout the crystal.) Along a 
fivefold axis, say rl, an atom can be located at a site 
given by 

an = [rl R(n)] / r  = 
2,3 4,5,6 

where d is a spacing given by (rl .  ri)/r and r =  Irll. 
The spacing d is the distance between the 0-atom 
plane and the adjacent plane of atoms above or below. 
This value is about 45% of r. The plane above and 
the plane below together form a puckered layer of 
atoms in this structure. If we suppose that r is approxi- 
mately twice the size of d, then the puckered layer 
spacing is 

4,5,6 

= integer x d. 

The result is a structure that is three-dimensionally 
layered with layering along each of the fivefold direc- 
tions. 

With regard to the threefold directions, the eleva- 
tion of an atom along the (111} direction is given by 

e . R ( n ) = r { ( e . r l )  ~ n , + ( e . r 4 ) E  n~} 
1,2,3 4,5,6 

1,2,3 4,5,6 

where e is a unit vector along the (111) direction and 
c is the ratio of (e. r l )  t o  ( e .  r4) .  From the measured 
values of ri (1~, c is found to be equal to 2~'+ 1 or r 3. 
That is, the shortest body diagonal of the flat rhom- 
bohedron is 4.2 times shorter than the longest body 
diagonal of the pointed rhombohedron. The numeri- 
cal relationship between these body diagonals is prob- 
ably related to the second set of modulations q(2/as 
we will show below. The ratio of magnitudes of r~ 
to r~ (2~ is approximately 4.1-4.2, which agrees well 
with the value of c given above. 

In retrospect, the assignment of the ri(~'s to correla- 
tion distances rather than to ordinary modulations 
was justified. It permits the decoration of rhom- 
bohedra in this model by imagining 'interpenetrating' 
rather than merely 'space-filling' rhombohedra. With 

Table 3. Nearest atomic distances (A) 

See foo tnote  to §3.1. 

MnAI6 

Average Mn-AI distance 2.56 
Average AI-AI distance 2.78 
Shortest Mn-A1 distance 2-44 
Shortest Mn-Mn distance 4.50 
Next Mn-Mn distance 4.99 

Icosahedra l  M n - A I  

Atom 1 to atom (3 + 4) 2.44 
Atom 52 to atom 3 or 1 2.44 
Rhombohedron edge 4.34 
Atom 1 to atom 2 4-56 
Atom 52 to atom (1+3) 4.80 

space-filling rhombohedra, an atom is usually only 
assumed to exist at each vertex. Mathematically, the 
imaginary interpenetrating rhombohedral construc- 
tion leads to a derivation of possible atomic sites with 
physically plausible coordinations of nine to ten, 
while maintaining icosahedral ordering. Relative dis- 
tances derived from this model are given in Table 3. 

3.3. Diffraction properties of the model I lattice 

Although the unit cell derived in the previous sec- 
tion conforms to the icosahedral point-group sym- 
metry, one cannot expect a 'cubic' cell to produce 
the observed icosahedral point-symmetry diffraction 
patterns. The icosahedral cubic cell can be considered 
at this stage to be a relevant 'reference lattice' for this 
special structure. Normally, one adds 'modulations' 
to a reference lattice to explain extraordinary diffrac- 
tion patterns. It is already clear that the character of 
these modulations must be different from what is 
normally seen in modulated structures because all 
the spots are found by ~niqi and, for any arbitrary 
reference lattice H, the diffraction spots referred to 
as H are also found as a sum of qi's. In this paper 
we only mention possible ways of incorporating 
'modulations' into model I. 

One way to proceed is to recall that the diffraction 
spots require six indices rather than the usual three 
for the purpose of indexing. Then, the three 
orthogonal vectors that describe the unit-cell edges 
are seen as only a partial representation of the degrees 
of freedom. The three remaining degrees of freedom 

+ 
can be found from a sublattice such as: a l = r l - r6 ,  

+ 
a2 = r2 - r4 and a3 + = r 3 - r 5. These vectors are mutually 
orthosonal and equal in magnitude to 2r sin 0 or 
4.56 A.* Looking at the atomic sites inside a unit cell, 
one finds sites related to such sublattices. Two sublat- 
tices aligned along each (111) direction can be found. 
A coherent arrangement of the sublattices and the 
reference lattice may require some local adjustments 
to avoid unphysical atomic distances. These adjust- 
ments, if applied, would have to conform to the 

* See foo tnote  to §3.1. * See footnote  to §3.1. 
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second set of modulations, qi(2), that were observed 
in the diffraction patterns. 

The coherent coexistence of the reference lattice 
and sublattices would appear in diffraction as two or 
more crystals in one. The coherence could easily be 
achieved in this particular case because the lattice 
and sublattices share many of the same atomic sites. 
(This coherent coexistence of two lattices is not a 
microdomain model because neither lattice domi- 
nates an extended local area.) Let the reciprocal lat- 
tice of {aj} and {a +} be {bj} and {b+}, respectively. 
Then the momentum transfer A k =  hbl+kb2+lb3+ 

i -t- r -I- t + k b 2 +  h b l +  Ib3, which is equal to (h+h ' )q l+ 
(k + k')q2+ (I + l')q3 + (1 -  k')q4+ (h - l')qs+ ( k -  h')q6. 
(The qi's are the reciprocal vectors of the ri's as 
above.) Then, all six of the qi vectors participate in 
the scattering, rather than as bj or b~ alone. 

As described above, the coexisting lattice model 
requires local adjustments consistent with an addi- 
tional set of modulations: q(2). Since the set q(2) was 
observed experimentally, this set of modulations 
could have been used from the outset as physical 
modulations in the material. Then, since the magni- 
tude of the q~(2)'s are all almost equal to 2z+  1 = z 3, 
the momentum transfer is again given by the sums of 
the six q~ vectors. In this case, our perception of the 
nature of this set of modulations is different. The 
existence of modulation vectors with the magnitude 
,/.3 leads to the lattice sites associated with {a~}, but 
it may be possible to bypass the concept of sublattices. 
In either case, accepting the q(2) as a guide to modula- 
tions on a reference lattice requires a generalization 
of the usual concept of modulated crystals. 

The appearance of the diffraction patterns reveal- 
ing point-group symmetry inconsistent with lattice 
translations can be understood then either by a model 
involving coexisting reference lattice and sublattices, 
or by the acceptance of the observed modulations as 
a physical phenomenon. Both approaches lead to the 
recognition of {a+}, independent of whether these 
three vectors are regarded as forming sublattice(s) or 
not. 

The relationship between the reference lattice 
derived from the q cl) and the modulations introduced 
via the q(2), and the implications on ordering and 
occupancy of atomic sites are explored in the follow- 
ing paper (Kuriyama & Long, 1986). 

3.4. Model H: number density 1-to-z 

Using a similar atomic arrangement to that in model 
I, it is possible to create another reference-periodic 
model, where now the face of a pointed rhombo- 
hedron may touch the face of another pointed rhom- 
bohedron, and the same is true for the fiat rhom- 
bohedra. In this case, there will be some ambiguity 
regarding the sites on the faces of rhombohedra. The 
number density of the space-filling object in this case 

is nearly in the ratio of one flat to z pointed rhom- 
bohedra. The unit cell is built up of rhombic triacon- 
tahedra, one of which is centered at each of the 
corners of a tetragonal unit. On the single short side, 
two triacontahedra touch on a twofold face. On the 
two longer sides, interpenetrating triacontahedra are 
seen. The ratio of a~ c is z. This unit cell is a faulted 
version of the nonperiodic three-dimensional tiling 
where one would have 89 rhombohedra in a model 
of this size: 34 fiat and 55 pointed. Instead, there are 
32 fiat and 52 pointed. The two missing fiat rhom- 
bohedra are shared between three triacontahedra (i.e. 
along a threefold direction), and the three missing 
pointed rhombohedra are similarly removed to create 
modulations along the threefold directions, to con- 

(2) form with the qi • 
The lattice parameters are a=19 .33  and c =  

11.95/~,* making model II much larger and more 
complex than model I. Presumably, larger and larger 
cells could be created, with increasingly fewer faults 
relative to a perfect aperiodic tiling. This model also 
involves an intrinsic anisotropy. 

4. Discussion 

Both model I and model II require that the atoms in 
the structure are quite close together. The atoms 
within the rhombohedra have atomic distances* as 
listed in Table 3. These are to be compared to the 
known distances in the MnA16 structure (Nicol, 1953), 
which has a similar atomic fraction of Mn to the alloy 
structure under investigation. 

In MnA16, some of the Mn and AI atoms are known 
to be unusually close to each other.f In the proposed 
models, the closest of the derived distances is the 
same as the closest of the distances in the known 
crystalline structure, while the rest of the derived 
distances are generally smaller than the average dis- 
tances in that structure. If all the sites of model I 
were occupied, then the structure would be approxi- 
mately 19% more dense than orthorhombic MnA16. 

It can be seen from both of the models that the 
known layering of MnA16 is extended to layering in 
all six of the fivefold directions of the icosahedral 
symmetry. Models I and II are similar to one another 
in that a similar atomic packing is used for both in 
order to satisfy the requirements of the icosahedral 
point-group symmetry within the volume, and that 
the overall building blocks are the same fiat and 
pointed rhombohedra. There the similarity ends, 
because model I is isotropic and has a simple unit 

* See footnote to §3.1. 
Recent EXAFS results (E. A. Stem et al., preprint) rule out 

the shortest A1-Mn distance in icosahedral phase AI-Mn alloys. 
With their value for this distance, the distances in this model are 
scaled up by 5%. This changes the density of the model to 6% 
more dense than MnA16 if all sites are filled. 
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cell with four flat and four pointed rhombohedra, 
and model II has a complicated unit cell involving 
32 fiat and 52 pointed rhombohedra, plus rules for 
accommodating modulations. Model II bears an 
obvious resemblance to the aperiodic structures 
attempted by others (e.g. Levine & Steinhardt, 1984). 
In view of the success of model I in leading to the 
derivation of additional periodicities through sublat- 
tices, and in explaining the possibility of observing 
icosahedral diffraction patterns, it is preferred for its 
physical plausibility over either the model II unit cell 
or the undecorated aperiodic structures. 

In conclusion, the electron diffraction patterns 
taken from icosahedral phase A1-Mn can be under- 
stood in terms of an icosahedral cubic reference lattice 
derived from six modulation vectors qi (~) plus six 
collinear modulations q(2). The appearance of the six 
r{s may be taken together with theoretical results of 
Bak (1985). However, if the model derived in this 
work is to be understood within the context of 
ordinary incommensurate modulated crystals, the 
theory would have to be generalized to include struc- 
tures for which the observed point symmetry is 
already realized in the unit cell of the reference lattice. 
Naturally, the pattern of atomic sites in this derived 
unit cell of the reference lattice is excluded from the 
230 space groups because it conforms to icosahedral 
point symmetry. 

In retrospect, once the experimental data required 
six independent vectors for indexing the diffraction 
pattern and for the construction of an atomic motif, 
the appearance of more than one three-dimensional 
periodicity was inevitable. In the following paper 
(Kuriyama & Long, 1986) the full mathematical struc- 
tures of the a cell and the a ÷ sublattices are given. It 
is also shown how they are accommodated into a 
structure consistent with both sets of modulation vec- 

tors. In that work the full structure factor in terms of 
atomic positions is derived. 

The authors gratefully acknowledge assistance with 
the experiment by L. Bendersky. We are also indebted 
to H. Fowler for his calculations in the preparation 
of Figs. 5 and 6, and to R. Roth for useful discussions. 
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Abstract 

The icosahedral cubic cell, derived in the first of this 
set of two papers, is further developed. Rules for the 
occupancy of atomic sites are derived based on peri- 
odic modulations over the reference lattice. The form 
of the derived structure, which involves partial 

Fibonacci sequence stacking, suggests that the true 
structure is the limit of a superposition of successively 
larger periodic sequences. The structure factor for the 
limiting (nonperiodic) structure is derived and some 
physical insights into the application of almost peri- 
odic functions to icosahedral phase A1-Mn are 
given. 


